Softwood product description

1. Pine sawlog and low grade log classes

Log Class	Diameter Class (cm)	Diameter mm	Lengths m
S	10,12	$80-129$	$1.8,2.1,2.4,3.0,3.3$
A	$13.5,15$, 17	$130-179$	$1.8,2.1,2.4,3.0,3.3$
B1	$19,21,23$, 25	$180-259$	$1.8,2.1,2.4,3.0,3.3$
B2	$19,21,23$, 25	$180-259$	$3.6,3.9,4.2,4.5,4.8,5.1,5.4,5.7,6.0,6.3,6.6$
C1	$27,29,31$, 33	$260-339$	$1.8,2.1,2.4,3.0,3.3$
C2	$27,29,31$, 33	$260-339$	$3.6,3.9,4.2,4.5,4.8,5.1,5.4,5.7,6.0,6.3,6.6$
D1	$35+$	$340+$	$1.8,2.1,2.4,3.0,3.3$
D2	$35+$	$340+$	$3.6,3.9,4.2,4.5,4.8,5.1,5.4,5.7,6.0,6.3,6.6$
Butt log	$27+$	$260+$	$1.8 \mathrm{~m}+$

Short log class $1.8 m-3.3 m$
Long log class $3.6 m-6.6 m$
2. Pine Sawlog

3. Butt log

- Pruned and partially pruned logs.
- $26 \mathrm{~cm}+$ thin end diameter.
- No knot clusters allowed.
- Knots, sweep and eccentricity similar to that of the saw log description.

4. Pine Low grade

		S	A			B				C				D				
Maximum sweep or crook (mm)	Long Short	$\begin{array}{rr} \hline 100 & 120 \\ 30 & 30 \end{array}$	135 40	$\begin{array}{r} 150 \\ 40 \end{array}$	170 40	$\begin{array}{r} 190 \\ 40 \\ 60 \end{array}$	$\begin{array}{r} 210 \\ 40 \\ 60 \end{array}$	$\begin{array}{r} 230 \\ 60 \\ 70 \end{array}$	$\begin{array}{r} 250 \\ 60 \\ 70 \end{array}$	$\begin{array}{r} 270 \\ 70 \\ 80 \\ \hline \end{array}$	$\begin{array}{r} 290 \\ 70 \\ 80 \end{array}$	$\begin{array}{r} 310 \\ 80 \\ 90 \end{array}$	$\begin{array}{r} 330 \\ 80 \\ 90 \end{array}$	$\begin{array}{r} 350 \\ 90 \\ 100 \end{array}$	$\begin{array}{r} 370 \\ 90 \\ 100 \end{array}$	$\begin{aligned} & 390 \\ & 100 \\ & 110 \end{aligned}$	$\begin{aligned} & 410 \\ & 100 \\ & 110 \end{aligned}$	$\begin{array}{r} 430+ \\ 110 \\ 110 \\ \hline \end{array}$
Large knots NOT	Long	No limit																
	Short	No limit																
Knot Clusters Clusters = sum of diams. of knots $>12 \mathrm{~mm}$ in 200 mm stem length d.o.b. = diam over bark just above knot cluster	Long Short	No limit No limit																

Eccentricity	Long	No limit
	Shot	No limit

- Some of the material will be dry and have blue stain.

5. Pole definition

5.1. Specifications

Pinus Radiata and Pinaster poles to comply with SABS 457 and SABS 753: 1994 specifications as amended from time to time.

5.2. Trimming Allowance

Trimming allowance of up to 100 mm shall be added to ensure that poles are of nominal length.

5.3. Pole Cutting List

LENGTH		DIAMETER CLASSES							
	$50-79$	$80-99$	$100-119$	$120-139$	$140-159$	$160-179$	$180-199$	$200-219$	
1.8		X	X	X					
2.1	X	X	X	X					
2.4	X	X	X	X					
3.0		X	X	X	X				
3.6		X	X	X	X				
4.2		X	X	X	X				
4.8		X	X	X	X				
5.4		X	X	X	X				
6		X	X	X	X	X			
7		X	X	X	X	X			
8		X	X	X	X	X			
9				X	X	X			
10					X	X	X		
11					X	X	X	X	
12					X	X	X	X	
13					X	X	X	X	
14						X	X	X	

Building and Fencing poles
Telephone poles
Transmission poles
$1.8 m-4.8 m$ lengths
5.4m-7.0m lengths
8.0m - 14.0m lengths

6. Volume calculations

Volumes of poles as described in paragraph 1, are calculated by computer using the following formula for Pinus species which was in use prior to 1995 to calculate volume tables generally used in South Africa:

Mid diameter in $\mathrm{cm}=$ thin end diameter in $\mathrm{cm}+($ length in $\mathrm{m} \times 0.7$)
2

Volume in $\mathrm{m}^{3}=(\mathrm{mid} \text { diameter in } \mathrm{cm})^{2} \times 3.14159 \times$ length in m 40000

This volume is then rounded off to three decimal places.

